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ABSTRACT: Terahertz (THz) frequency technology has
many potential applications in nondestructive imaging,
spectroscopic sensing, and high-bit-rate free-space communi-
cations, with an optical modulator being a key component.
However, it has proved challenging to achieve high-speed
modulation with a high modulation depth across a broad
bandwidth of THz frequencies. Here, we demonstrate that a
monolithically integrated graphene modulator can efficiently
modulate the light intensity of the THz radiation from a THz
quantum cascade laser with a 100% modulation depth for
certain region of the pumping current, as a result of the strongly enhanced interaction between the laser field and the graphene
enabled by this integration scheme. Moreover, the small area of the resulting device in comparison to existing THz modulators
enables a faster modulation speed, greater than 100 MHz, which can be further improved through optimized designs of the laser
cavity and modulator architectures. Furthermore, as the graphene absorption spectrum is broadband in nature, our integration
scheme can be readily scaled to other wavelength regions, such as the mid-infrared, and applied to a broad range of other
optoelectronic devices.
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Lying between the microwave and mid-infrared, the
terahertz (THz) frequency region of the electromagnetic

spectrum (∼0.3 to 10 THz) has potential for a number of
diverse applications ranging from nondestructive imaging1−5

and spectroscopic sensing6−8 through to ultrahigh-bit-rate
wireless communication.9−11 Research in this region of the
spectrum has undergone significant development over the last
two decades, and the introduction and application of new
materials such as graphene12−14 and metamaterials,15−17

together with the development of devices such as the quantum
cascade laser (QCL)18−20 and the THz quantum well infrared
photodetector (THz QWIP),21−23 are bringing THz tech-
nologies closer to more widespread application.
An optical modulator is a key component widely used for

beam manipulation, imaging, optical communication, and active
mode locking in other parts of the electromagnetic spectrum.
However, the development of fast and efficient THz
modulators is in its infancy, compared with the significant
advances made in THz frequency lasers and detectors.
Attempts to fabricate THz amplitude modulators have so far
focused on semiconductor heterostructures containing a two-
dimensional electron gas (2DEG) in which electrons can be

accumulated or depleted by an applied gate voltage.24 However,
the modulation depth of such devices is ultimately limited by
the achievable tunability in electron density, which is up to ∼1
× 1012 cm−2 for a 2DEG in a conventional semiconductor
heterostructure.14 These devices were, therefore, initially found
to modulate the THz amplitude by only a few percent, although
through the incorporation of metamaterials or plasmonic
structures that enhance the interaction between the THz
radiation and the 2DEG,15,25 a modulation depth of 30% was
achieved more recently. A more promising material for efficient
THz modulation is graphene.26−28 Its carrier concentration can
be electrically tuned to be as high as 1 × 1014 cm−2, and its
natural bidimensionality and flexibility allow easy incorporation
with other materials and structures. Recently a modulation
depth of ∼15% was achieved in the 570−630 GHz frequency
band through electrical gating of a graphene sheet,12 and this
was increased to ∼64% through use of plasmonic or cavity
structures, albeit with a narrow bandwidth.14,29,30 However,
further increase of the modulation depth has proved difficult,
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unless by stacking multiple graphene layers.31 In addition, all
the graphene modulators to date were studied as isolated
components, with typically large active areas (tens of mm2)
required to facilitate optical alignment. The consequent large
time constant of the effective RC circuit of the device limited
the modulation speed of such graphene modulators to only
∼13 MHz.14 Although this is similar to that found in
semiconductor modulators,25 a much higher modulation
speed ought to be possible in graphene-based modulators
owing to the material’s ultrahigh intrinsic carrier mobility
(>20 000 cm2 V−1 s−1 for graphene on SiO2 at room
temperature).32

To explore the full potential of graphene, the monolithic
integration of a graphene modulator with a THz radiation
source is a promising solution. The benefits are threefold: first,
miniaturization will increase the modulation speed owing to
reduced parasitic capacitance and resistance of the device;
second, a larger modulation depth may be achieved as a
stronger interaction of the THz radiation with the graphene
layer is possible; and, finally, the integration eliminates one
stage of optical alignment and the associated bulky mirrors or
lenses.
Here, we report, for the first time, the realization of graphene

modulators integrated with surface-emitting concentric-circular-
grating (CCG) THz quantum cascade lasers33,34 for achieving a
100% modulation depth with a fast modulation speed. By
employing the CCG as a feedback element,33,34 steady single-
mode THz QCL operation can be obtained with relatively high

output power. We demonstrate that a 100% modulation depth
can be achieved as a consequence of a strong interaction of the
graphene with the laser field, which is greatly enhanced at the
output apertures of the laser cavity. Moreover, the small device
area of the device allows fast modulation that could be further
improved through optimized design of the laser cavity and the
modulator architecture. Furthermore, since graphene has a
broadband absorption spectrum,35 our integration scheme can
readily be scaled to other wavelength regions. For example, it
can be easily extended to the mid-infrared (mid-IR) regime by
monolithically integrating mid-IR QCLs with graphene. In
addition, the proposed scheme will enable the realization of
mid-IR and THz integrated optical circuits, combined with
other photonic components such as detectors, waveguides, and
filters, for communication, sensing, and spectroscopy applica-
tions.

■ DEVICE OVERVIEW

Figure 1a shows a schematic illustration of the integrated
device, which consists of an underlying surface-emitting CCG
THz QCL with a graphene modulator, the Fermi level of which
can be dynamically tuned by a voltage (Vgr) applied to the
gating electrode. The active region of the QCL, with a peak
gain at around 3 THz, is sandwiched between a bottom gold
plate and the upper CCG metal grating. The CCG was
designed as a second-order grating such that single-mode THz
radiation will be emitted vertically through the grating

Figure 1. Overview of the quantum cascade laser integrated graphene modulator. (a) Schematic illustration of the device. Only the central few rings
of the circular-concentric grating (CCG) (orange region) are connected together with the spoke bridges to allow electrical pumping of the quantum
cascade laser (QCL) over a small active region. Light is emitted vertically from the surface and is modulated by the electrically gated graphene. (b)
Optical microscope images showing the central part of a fabricated device. The bonded gold wire for electrical driving of the QCL is also shown in
the image. (c) Enlarged view showing details of the graphene and the QCL electrodes, which are insulated by a 450 nm thick SiO2 layer. A wrinkle
resulting from folding of transferred chemical vapor deposition (CVD) graphene is visible at the lower right corner.
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apertures, which is then modulated by the electrically gated
graphene. To facilitate graphene transfer, the active region of
the QCL was not etched to keep the upper surface as flat as
possible. Thus, the laser cavity is formed solely by the CCG
itself. Additionally, only the central few rings of the CCG (the
orange region in Figure 1a) are connected together with spoke-
like metal bridges to allow electrical pumping over a small
active region beneath. This restricted the otherwise high
current in the QCL to only a few amperes. With the correct
CCG design, the optical modes are confined in the pumped
area so that the QCL maintains a sufficiently low threshold
current for lasing action (see Supporting Information). On top
of the CCG, a SiO2 layer insulates the QCL electrode from the
graphene gate electrode; this is followed by the graphene sheet.
The device fabrication is assisted by patterning the graphene
gate electrode before the introduction of the graphene sheet.
Figure 1b shows optical microscope images of the central part
of a fabricated device. The enlarged view in Figure 1c shows the

details of the graphene and QCL electrodes, which are
insulated by the SiO2 layer. A wrinkle resulting from folding
of the transferred chemical-vapor-deposition-grown (CVD)
graphene is visible at the lower right corner.

■ SEPARATE CHARACTERIZATIONS OF THE THZ
CCG QCL AND THE GRAPHENE

We first characterized the THz CCG QCL with the graphene
electrode floating. The QCL lased under pulsed operation (500
ns pulse width, 10 kHz repetition rate) up to a 102 K heat sink
temperature (Figure 2a), compared with ∼135 K for a typical
ridge laser (200 μm wide and 1.5 mm long) fabricated from the
same QCL wafer. Surface-emitting single-mode lasing was
obtained at all temperatures and pump currents. Figure 2b
shows the laser spectra as a function of current at a heat sink
temperature of 20 K.
To characterize the properties of the CVD-grown graphene,

a separate graphene modulator was fabricated on a SiO2/Si

Figure 2. Separate characterization of the THz QCL and the graphene layer. (a) Light−current−voltage (LIV) characteristics of the THz CCG QCL
at different heat sink temperatures. (b) Laser spectra as a function of pump current I, at 20 K. It shows a single-mode operation over the whole
dynamic range of THz CCG QCLs. (c) Schematic representation of the structure used to characterize the graphene layer. It is noted that the bottom
gate metal layer under the graphene area was opened for THz beam transmission. (d) Direct current conductivity, carrier density, and Fermi energy
of the graphene as a function of gate voltage, measured at 78 K. (e) Gate voltage dependence of the modulation of the THz transmitted intensity
(∼3 THz) by the graphene, showing a modulation depth of ∼11% over the applied bias range from −40 to 60 V. The effect of the silicon substrate
on the experimentally measured modulation has been removed using a transfer matrix method. Before removing this substrate effect, the modulation
depth is 17%.
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substrate, as shown schematically in Figure 2c, using the same
CVD graphene sheet (see Methods). The 450 nm thick SiO2
layer was formed by plasma-enhanced CVD (PECVD) and was
identical to that used for the QCLs. Raman spectroscopy was
used to confirm that the graphene sheet after transfer was both
high quality and a monolayer (Figure S2, Supporting
Information). In view of the fact that the QCL-integrated
devices will be operated under cryogenic conditions, we
investigated the electrical and optical absorption properties of
the graphene at 78 K (the QCL surface and active region are
typically several tens of Kelvin higher than the heat sink
temperature). Using a simple model to fit the gate-voltage-
dependent sheet resistance of the graphene (see Supporting
Information), we obtained the gate-voltage-dependent sheet
conductivity, carrier density, and Fermi energy of the graphene,
as plotted in Figure 2d. The inherent p-type doping of the CVD
graphene is confirmed by the reduction in conductivity with
increasing gate bias, up to the Dirac point (Vg ≈ 50 V). The
graphene conductivity and carrier density were found to change
from 0.16 mS to 0.65 mS and from 0.1 × 1013 cm−2 to 0.45 ×
1013 cm−2, respectively, as the gate bias was increased from −40
V to +60 V. Correspondingly, the Fermi energy was tuned from

−230 meV to +20 meV. The nonzero conductivity at the Dirac
point is due to a residual carrier concentration of 0.1 × 1013

cm−2, resulting from charged impurities.36

Although the use of a back-gate structure, which features a
relatively small capacitance, limits the range of carrier density
and Fermi energy tuning possible (a top gating scheme could
realize a carrier density as high as 1013−1014 cm−2),37 the
tunability of the carrier density in graphene is still much larger
than that achieved in 2DEGs arising from semiconductor
heterostructures. As the optical absorption of graphene in the
THz region is dominated by intraband optical transitions (i.e.,
free carrier absorption), this larger tunability in carrier density,
along with the generally high mobility of graphene (∼900 cm2

V−1 s−1 at 78 K in our case), makes graphene a much more
efficient THz wave modulator than alternative semiconductor
devices. Normalized to the maximum light transmission at the
Dirac point, TDir, a modulation depth of ∼11% in transmitted
power (T(Vg)/TDir) was observed for our graphene modulator
upon sweeping the gate voltage from −40 V to +60 V,
measured at 78 K, using a standard ridge waveguide 3.0 THz
QCL as the radiation source (fabricated from the same wafer as
used for the CCG QCL of our integrated device) (Figure 2e).

Figure 3. Integrated graphene modulation of a CCG QCL. (a) Cross-sectional view of the calculated electric field distribution of the CCG QCL. A
white arrow indicates the electrically pumped area. (b) Amplitude of the electric field (Er) near the output aperture of the CCG QCL along the white
dashed line in the inset, which is the cross-sectional view of the |Er| distribution near a CCG aperture. (c) Enhanced modulation of the THz wave by
the integrated graphene modulator. The intensity of the lasing peak varies from nearly zero at VG = −26 V to a maximum at VG = +40 V. (d) VG
dependence of the output power of the CCG QCL with (circles) and without (rectangles) the graphene. The pumping current of the QCL is 2.80 A.
(e) Light−current characteristics of the QCL as a function of VG confirming that a 100% modulation depth is achieved when the pumping current of
the THz QCL is less than 2.78 A. For higher pumping current of the QCL (2.78−2.93 A), the THz radiation cannot be totally suppressed, but we
can still obtain a modulation depth of 94% in the worst case (when the injection current to the QCL is ∼2.85 A).
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Here, the effect of the Si substrate on the modulation was
removed using a transfer matrix method,12 and the measured
result agrees well with theoretical analysis (Figure 2e, see
Supporting Information for details). It is worth noting that the
optical absorption of graphene in the THz region of the
spectrum differs fundamentally from that at visible and near-
infrared frequencies, where interband optical transitions
dominate, resulting in only a ∼2.3% intensity modulation.

■ INTEGRATED GRAPHENE MODULATION OF CCG
QCLS

A larger modulation strength is expected when the graphene is
integrated with a THz CCG QCL owing to the electric field
enhancement in the graphene near the output aperture of the
QCL. Figure 3a plots the cross-sectional view of the calculated
electric field distribution of the CCG QCL. As only the
horizontally polarized component of the electric field (Er) is
responsible for the THz emission into the far field, we
investigated the Er distribution around the CCG apertures, with
a representative cross-sectional plot shown in the inset of
Figure 3b. The curve in Figure 3b describes the |Er| field profile
along the white dashed line of the inset, indicating a great
enhancement of |Er| in the aperture region. For a SiO2 spacing
thickness of 450 nm, it is estimated that |Er| is enhanced by a
factor of 12 in the graphene region, which corresponds to an
intensity enhancement factor of ∼140. The resulting enhanced
modulating effect of graphene on the CCG QCL is shown in

Figure 3c, where the intensity of the lasing peak varies from
nearly zero at VG = −26 V to a maximum at VG = +40 V.
During measurement, the QCL was biased at 14.8 V
(corresponding to an injected current of 2.80 A) in pulsed
mode operation (500 ns pulse width, 10 kHz repetition rate) at
a 20 K heat sink temperature, and the graphene was gated at a
series of dc biases VG defined by VG = VQCL − Vgr, with VQCL
being the voltage applied to the QCL electrode and Vgr the
voltage applied to the graphene electrode (see Figure 1a). The
solid circles in Figure 3d show the average laser output power
as a function of VG, which is consistent with the results in
Figure 2d and e. As a comparison, a control device without the
graphene sheet was fabricated, and the output power is plotted
as a function of VG as rectangles in Figure 3d, with no obvious
modulation being observed. Note that in the presence of the
graphene the output power decreases significantly; the power of
the integrated device at VG = +40 V is around a quarter of that
from the control device. To verify the effect of the graphene
modulator further, we measured the light−current curves of the
laser at a series of graphene gate voltages, as shown in Figure
3e. As it indicates, for the pumping current of the THz QCL
below 2.78 A, the integrated device allows a 100% modulation
depth (|ΔT|/TMax) of the THz radiation amplitude, as the
emission vanishes when the graphene is biased with a large
enough negative voltage. For higher pumping current of the
QCL (2.78−2.93 A), the THz radiation cannot be totally
suppressed, but we can still obtain a modulation depth of 94%
in the worst case (when the injection current to the QCL is

Figure 4. Measurement of the modulation speed of the integrated graphene modulator. (a) (i) Device bias scheme. The pulse duration for the QCL
was fixed at TQCL = 1 μs (corresponding to a frequency of fQCL = 1 MHz), while an ac rectangular signal was applied onto the graphene electrode
with 50% duty cycle and various periods of TG = TQCL/N ( f G = NfQCL), where N is an integer. (ii) Predicted output optical signal of the device if the
graphene modulator is able to follow the variation of the applied voltage. In this case, the average peak power Pav = (P(Vgr) + P(V0))/2, where P(Vgr)
and P(V0) are the output peak powers when a constant Vgr or V0 is applied to the graphene electrode, respectively. (iii) Predicted output optical
signal of the device if the applied signal to the graphene is faster than the speed of the modulator, in which case Pav deviates from (P(Vgr) + P(V0))/2.
(b) Pav as a function of modulation frequency f G. The blue line (star symbols) corresponds to V0 = 0 V and Vgr = 10 V, while the red line (circle
symbols) corresponds to V0 = 0 V and Vgr = 15 V. The gray-, blue-, and red-shaded ribbons indicate the output power when the graphene electrode
is dc biased at 0, 10, and 15 V, respectively. The widths of the ribbons reflect the instability of laser power during the measurement period. (c)
Frequency response of the graphene modulator.

ACS Photonics Article

DOI: 10.1021/acsphotonics.5b00317
ACS Photonics 2015, 2, 1559−1566

1563

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.5b00317/suppl_file/ph5b00317_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.5b00317


∼2.85 A). It is worth mentioning that although the graphene
was put above the cavity, it actually interacts with the
evanescent waves of the cavity mode through the output
apertures. Therefore, when gating the graphene at different
voltages, its refractive index varies, leading to a slight change of
the effective refractive index of the laser cavity and, thus, a slight
shift of the lasing peak, as can be seen in Figure 3c.

■ MODULATION SPEED OF THE INTEGRATED
GRAPHENE MODULATOR

Owing to the lack of suitable fast THz detectors, we cannot
observe the time-varying THz modulated signal directly to
determine the operational speed of the modulator. Therefore,
the modulation speed is estimated by monitoring the average
output power of the device while an ac voltage signal is applied
to the graphene electrode, as shown in Figure 4a(i). The pulse
duration for the QCL is fixed at TQCL = 1 μs (corresponding to
a frequency of f QCL = 1 MHz), while the ac rectangular signal
on the graphene has a 50% duty cycle and a period of TG =
TQCL/N ( f G = Nf QCL), where N is an integer. If the graphene
modulator can follow the variation of the applied voltage, the
output optical signal of the device will be as that shown in
Figure 4a(ii), and the average power (Pav) detected
experimentally should be (P(Vgr) + P(V0))/2 regardless of
the modulation frequency, where P(Vgr) and P(V0) are the
output peak powers when constant gating voltages Vgr and V0
are applied to the graphene electrode, respectively. Otherwise,
as illustrated in Figure 4a(iii), Pav will deviate from (P(Vgr) +
P(V0))/2. Therefore, one could expect a flat Pav vs f G curve up
to a cutoff point, where the corresponding f G is approximately
the modulation speed of the device. The measured Pav vs f G
curve is shown in Figure 4b, in which the blue line (star
symbols) corresponds to V0 = 0 V and Vgr = 10 V, while the red
line (circles) corresponds to V0 = 0 V and Vgr = 15 V. The
gray-, blue-, and red-shaded ribbons indicate the output powers
when the graphene electrode is dc biased at 0, 10, and 15 V,
respectively. The widths of the ribbons indicate the instability
of the laser power during the measurement period. A flat
dependency was observed up to 12 MHz, the limit of our
experimental facilities, with no cutoff point, which already
makes it one of the fastest THz modulators. To extend the
measurement range, we investigated the dynamic response
(S21) using a radio frequency (RF) network analyzer. Using this
together with an equivalent circuit model, we obtained the
frequency response of the integrated modulator (Figure 4c; see
Supporting Information for details). The modulation speed can
therefore be estimated to be 110 MHz from the 3 dB cutoff
point.
The electrical modulation on the graphene sheet is given by

(see Supporting Information)
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where VS and VG are the amplitude of the voltage on the
graphene electrode and that applied to the graphene sheet,
respectively, R0 is the internal impedance of the RF source (50
Ω), RG

t is the effective graphene resistance, CG
t and Cp

t are the

total capacitance of the graphene sheet and the metal contacts,
respectively, and ω is the angular frequency of the modulation.
In eq 1, we assumed RG

t ≪ 1/iωCG
t for our case. Two time

constants, τ1 = R0(Cp
t + CG

t ) and τ2 = RG
t CG

t , then determine the
cutoff frequency. The first time constant can be decreased by
reducing the size of the graphene back gate (i.e., the QCL bias
contact), which requires a smaller cavity design. The second
time constant can be decreased by reducing the widths of the
graphene electrode slits (this makes the effective area of the
graphene sheet smaller so that the graphene capacitance is
smaller) and by reducing the graphene resistance. The
graphene resistance is dominated by the contact resistance at
the metal/graphene edges and can be reduced though several
techniques reported in the literature.38−40

■ DISCUSSION

For QCLs, direct modulation of the laser itself can be very fast
by microwave injection (>10 GHz for ridge-waveguide
device41). However, in this direct modulation case, as the
pumped current and voltage keep changing, the gain profile and
the refractive index, as well as the temperature, of the active
region are varying rapidly, making the laser frequency fluctuate,
i.e., the frequency chirping effect. Our scheme could allow the
laser to operate more stably because now the modulation is
performed by changing the graphene voltage, but not the laser.
Although our devices do not totally get rid of the chirping
effectafter all, the frequency shift in Figure 3c is
perceivableit could be expected that they have a smaller
chirping effect since the effective refractive index change
induced by the gating graphene is much smaller than that
induced by the modulating gain medium. Therefore, our
scheme may be advantageous in applications where the chirping
effect is not desired. In addition, our device may also be used as
a whole as a THz modulator for free-space light modulation
with the active region of the QCL unpumped or pumped below
the threshold, so that it is suitable for many other occasions
where their own light sources are used.

■ CONCLUSIONS

We have reported a THz graphene modulator, monolithically
integrated with a surface-emitting CCG QCL, that shows a
modulation depth in the range of 94−100% and a response
speed of 110 MHz. The high modulation depth is a
consequence of a strong interaction of the graphene with the
laser field, which was further enhanced at the output apertures
of the laser cavity, while the high modulation speed is due to
the reduced device area enabled by the integration. Even faster
operation frequency could be achieved through further
improvements to the device architecture. Our integration
scheme can also be applied to the mid-infrared and near-
infrared frequency ranges, as the optical absorption of graphene
is naturally broadband.

■ METHODS

Preparation of the Graphene Film. The commercially
sourced CVD-grown graphene on copper foil was spin-coated
with a poly(methyl methacrylate) (PMMA) film, which was
then fully cured in a 110 °C oven for 5 min, resulting in a
PMMA thickness of ∼1 μm. The copper substrate was etched
by floating the PMMA/graphene/copper sheet on an
ammonium persulfate (0.1 M, Sigma-Aldrich) solution for >3
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h. After rinsing, the PMMA/graphene film was ready for
transfer.
Fabrication of the Isolated Graphene Modulator. A

450 nm thick layer of SiO2 was blanket deposited on a lightly
doped p-type Si substrate (resistivity 1−20 Ω·cm) using
PECVD. The source, drain, and back electrodes were formed
by electron-beam evaporation, after which the PMMA/
graphene film (1 cm × 1 cm) was transferred and contacted
with source and drain electrodes. The sample was dried in air,
followed by annealing in nitrogen at 160 °C for 3 h. The
PMMA layer was then removed in acetone.
Fabrication of the Integrated Devices with Graphene

Modulator and CCG QCL. The active region of the THz
QCL was grown by molecular beam epitaxy on an undoped
GaAs substrate. Fabrication of the devices commenced with
gold−gold thermocompression bonding of the active region to
an n+ GaAs receptor wafer. The original QCL substrate was
then removed through lapping and selective chemical etching.
This was followed by the removal of the highly absorbing
contact layer of the active region to prevent attenuation of the
THz radiation that couples out of the grating slits. Top metal
gratings (Ti/Au/Ti 15/300/10 nm) were defined by standard
optical lithography and lift-off; the top 10 nm Ti layer was used
as an adhesive between the Au and the subsequent SiO2
insulation layer, which was grown by PECVD. After patterning
the SiO2 layer to allow electrical access to the QCL, another
optical lithography and lift-off process was carried out to define
the graphene electrode on top of the SiO2/CCG rings. A
graphene sheet was then transferred onto the graphene
electrode, followed by annealing in nitrogen at 160 °C for 3
h to relax the PMMA/graphene film slowly and make full
contact with the surface underneath. After removing the
PMMA layer with acetone, the graphene was patterned to
remove unwanted material area and avoid contacting the other
electrodes. The samples were then cut and indium-mounted
onto Cu submounts, wire-bonded, and finally attached to the
coldfinger of a cryostat for measurement.
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